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Sources with a Fidelity Criterion
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SUMMARY We are interesting in the error exponent for
source coding with fidelity criterion. For each fixed distortion
level ∆, the maximum attainable error exponent at rate R, as a
function of R, is called the reliability function. The minimum rate
achieving the given error exponent is called the minimum achiev-
able rate. For memoryless sources with finite alphabet, Marton
(1974) gave an expression of the reliability function. The aim of
the paper is to derive formulas for the reliability function and the
minimum achievable rate for memoryless Gaussian sources.
key words: error exponent, minimum achievable rate, reliability
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1. Introduction

In this paper we study the error exponent for source
coding with fidelity criterion.

Let X = {Xn} be an information source. We de-
note by X and Y the input alphabet space and the
output alphabet space, respectively. Each Xn is an X
valued random variable. An encoder ϕn and a decoder
ψn are given by mappings

ϕn : Xn −→ Mn, ψn : Mn −→ Yn,

whereMn = {1, 2, ...,Mn} and Mn is an integer. A se-
quence {(ϕn, ψn)}n=1,2,... of pairs of encoders and de-
coders is simply called a code. Without loss of gen-
erality, we may identify Y with X and ψn ◦ ϕn with
ϕn, respectively. Hence, a code ϕ ≡ {ϕn}n=1,2,... is a
sequence of mappings

ϕn : Xn −→ Xn, n = 1, 2, ....

The rate ‖ϕ‖ of the code ϕ = {ϕn} is defined as

‖ϕ‖ = lim sup
n→∞

1
n
log |ϕn|,

where |ϕn| denotes the cardinality of the set ϕn(Xn).
The fidelity criterion is defined by a distortion

function ρ : X ×X −→ [0,∞). On Xn ×Xn we define
a distortion function by

ρn(xn
1 , y

n
1 ) =

1
n

n∑
k=1

ρ(xk, yk),
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where xn
1 ≡ (x1, ..., xn) ∈ Xn. For each distortion level

∆ > 0, we are interesting in the asymptotic behavior
of the error probability

en(ϕn,∆) = P (ρn(Xn
1 , ϕn(Xn

1 )) > ∆).

Let R(∆;X) be the rate-distortion function of X. The
rate distortion theorem says that if a rate greater than
R(∆;X) is available then there exists a code ϕ = {ϕn}
such that the error probability en(ϕn,∆) goes to zero
as n → ∞. On the other hand, if the converse theorem
holds, en(ϕn,∆) goes to one provided that the rate of
ϕ is less than R(∆;X).

For a stationary memoryless source (SMS) with
finite alphabet Marton [1] (see also [2]) showed that, if
the rate is greater than R(∆;X), the minimum error
probability en(ϕn,∆) converges to zero exponentially
and gave an explicit expression for the error exponent.

To study the error exponent we define the mini-
mum achievable rate and the reliabibility function.

Definition 1: For each non-negative number r, a
code ϕ = {ϕn} is said to be (∆, r)-achievable if

lim sup
n→∞

1
n
log en(ϕn,∆) ≤ −r.

We denote by C(∆, r) the family of all (∆, r)-achievable
codes. The minimum (∆, r)-achievable rate Re(∆, r) is
defined by

Re(∆, r) = inf{‖ϕ‖;ϕ ∈ C(∆, r)}.

For each non-negative number R, the minimum error
exponent is defined by

re(∆, R) = − inf
ϕ : ‖ϕ‖≤R

lim sup
n→∞

1
n
log en(ϕn,∆).

As a function of R, re(∆, R) is called the reliability
function.

Remark: In case of without distortion the minimum
achievable rate has been studied by Han [3].

Note that, for each fixed distortion level ∆, the
reliability function re(∆, · ) is the inverse function of
Re(∆, · ), and vice versa.

In the case where the rate is less than R(∆;X), un-
der some assumptions, the error probability en(ϕn,∆)
goes to one exponentially as n → ∞. In other words,



1892
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.10 OCTOBER 2000

the probability of correct decoding converges to zero
exponentially. To study the speed of the convergence
we introduce the minimum achievable rate and the re-
liability functoin for correct decoding.

Definition 2: For each non-negative number r, a
code ϕ = {ϕn} is said to be (∆, r)-achievable for correct
decoding if

lim inf
n→∞

1
n
log(1− en(ϕn,∆)) ≥ −r.

We denote by C∗(∆, r) the family of all (∆, r)-
achievable codes for correct decoding. The minimum
(∆, r)-achievable rate (for correct decoding) R∗

e(∆, r)
is defined by

R∗
e(∆, r) = inf{‖ϕ‖;ϕ ∈ C∗(∆, r)}.

The reliability function r∗e(∆, R) (for correct decoding)
is defined by

r∗e(∆, R) = − sup
ϕ : ‖ϕ‖≤R

lim inf
n→∞

1
n
log(1− en(ϕn,∆)).

The reliability functon was first investigated by
Marton [1] (see also [2]) for a SMS with finite alphabet.
She showed that the reliability function is expressed in
terms of the divergence and the rate-distortion func-
tion. For probability distributions µ and ν, we denote
by D(ν‖µ) the divergence (or Kullback-Leibler infor-
mation number) of ν with respect to µ. For a random
variable ξ with distribution ν, the rate-distortion func-
tion R(∆; ξ) ≡ R(∆; ν) is defined as

R(∆; ξ) = inf
η
{I(ξ, η);E[ρ(ξ, η)] ≤ ∆},

where I(ξ, η) denotes the mutual information between
ξ and η. Marton [1] proved the following theorem.

Theorem 1: Let X = {Xn} be a SMS with finite
alphabet and denote by µ the probability distribution
of Xn. Then the reliability function is given by

re(∆, R) = inf
ν
{D(ν‖µ);R(∆; ν) > R}. (1)

For the sources with continuous plphabet, as far
as we know, no formulas have been obtained for the
minimum achievable rate or the reliability function. In
this paper we study the Gaussian source which is one of
the most important sources with continuous alphabet.

The aim of the paper is to derive explicit formu-
las for the minimum achievable rate and the reliability
function for a stationary memoryless Gaussian source
(SMGS), where the fidelity criterion is defined by mean
squared error (Theorem 2 and Theorem 3). It will also
be shown that the same formula (1) holds for the SMGS
(Theorem 4). For the SMS with finite alphabet (1) has
been proved by using the standard method of type sets
or typical sets (cf. [1], [2]). We should note that the
method of types does not work for the sources with

continuous plphabet. We shall prove our results by us-
ing large deviation properties of Gaussian random se-
quences, and the known results on the rate-distortion
function and the divergence of Gaussian random vari-
ables as well.

Our main theorems will be stated in Sect. 2, and
the proofs will be given in Sect. 3.

2. Error Exponent for Coding of Memoryless
Gaussian Sources

We consider a SMGS X = {Xn} with distribution
N(0, σ2). Namely, X = {Xn} is a sequence of i.i.d.
Gaussian random variables with distribution N(0, σ2).
We assume that the fidelity criterion is defined by

ρ(x, y) = |x− y|2, x, y ∈ R.

For simplicity we put

‖xn
1‖2n =

1
n

n∑
k=1

|xk|2, xn
1 ∈ Rn.

If ν is a Gaussian distribution with mean a and
variance γ2, we simply denote as ν ∼ N(a, γ2). The
following properties concerning the divergence and the
rate-distortion function of Gaussian distributions are
well known (see e.g. [4]). The first inequality in (3) is
due to Binia-Zakai-Ziv [5].

Lemma 1: Let µ ∼ N(0, σ2). Assume that ν is a
probability distribution onR with mean a and variance
γ2, νa ∼ N(a, γ2) and ν0 ∼ N(0, γ2). Then

D(ν‖µ) ≥ D(νa‖µ)

=
1
2

(
γ2

σ2
− 1− log γ

2

σ2
+

a2

σ2

)
, (2)

and

R(∆; νa)−D(ν‖νa) ≤ R(∆; ν) ≤ R(∆; νa)

= R(∆; ν0) =
1
2
logmax

(
γ2

∆
, 1
)
. (3)

We now state our first main result to give the ex-
plicit formulas for the minimum achievable rate and the
reliability function of the SMGS.

Theorem 2: Let X = {Xn} be the SMGS with dis-
tribution N(0, σ2). Then

Re(∆, r) =
1
2
logmax

(
α2

∆
, 1
)
, (4)

re(∆, R) =
1
2

(
α2

σ2
− 1− log α

2

σ2

)
if R > R(∆;X1), (5)

re(∆, R) = 0 if R ≤ R(∆;X1), (6)
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where, in (4) α ≥ σ is determined by

r =
1
2

(
α2

σ2
− 1− log α

2

σ2

)
, (7)

and, in (5) α is determined by

R =
1
2
log

α2

∆
. (8)

Our second result provides the formulas for the
minimum achievable rate and the minimum error ex-
ponent for correct decoding.

Theorem 3: For the same SMGS as in Theorem 2 we
have

R∗
e(∆, r) =

1
2
logmax

(
β2

∆
, 1
)
, (9)

r∗e(∆, R) =
1
2

(
β2

σ2
− 1− log β

2

σ2

)
if R ≤ R(∆;X1), (10)

r∗e(∆, R) = 0 if R > R(∆;X1), (11)

where 0 < β ≤ σ in (9) (resp. (10)) is determined by
(7) (resp. (8)), by replacing α with β.

It seems to be interesting to show that the min-
imum achievable rates Re(∆, r) and R∗

e(∆, r) and the
reliability functions re(∆, R) and r∗e(∆, R) can be ex-
pressed in terms of the rate-distortion function and the
divergence, and show that the formula (1) remains true
for the SMGS.

Theorem 4: For the SMGS we have

Re(∆, r) = max
ν

{R(∆; ν);D(ν‖µ) ≤ r}, (12)

re(∆, R) = min
ν

{D(ν‖µ);R(∆; ν) ≥ R}, (13)

R∗
e(∆, r) = minν

{R(∆; ν);D(ν‖µ) ≤ r}, (14)

and

r∗e(∆, R) = min
ν

{D(ν‖µ);R(∆; ν) ≤ R}, (15)

where µ denotes the distribution of Xn.

Remark: For the SMGS, as will be shown in later, the
maximum or the minimums in (12)–(15) are attained
by Gaussian distributions.

3. Proof of Theorems

In this section we prove our theorems.
We denote by

Bn(cn
1 , γ) = {xn

1 ∈ Rn; ‖xn
1 − cn1‖2n ≤ γ2}

the n-dimensional sphere with center cn1 and radius√
nγ. Note that the volume |Bn(cn

1 , γ)| of Bn(cn
1 , γ)

is equal to

|Bn(cn
1 , γ)| =

(
√
π
√
nγ)n

Γ
(

n
2 + 1

) . (16)

Let X = {Xn} be the SMGS with distribution
µ ∼ N(0, σ2). To prove the theorems we need a lemma
concerning the asymptotic behavior of X = {Xn}. For
each a > 0, we define D(Pa‖µ) by

D(Pa‖µ) = inf{D(ν‖µ); ν ∈ Pa},

where Pa denotes the class of all probability distribu-
tions ν satisfying∫

R
|x− a|2dν(x) = ∆.

Lemma 2: Let X = {Xn} be the SMGS.
(i) For any a > 0 we have

lim
n→∞

1
n
logP

(
1
n

n∑
k=1

|Xk − a|2 ≤ ∆
)

= −D(Pa‖µ). (17)

In particular, if a2 = σ2 +∆, then

lim
n→∞

1
n
logP

(
1
n

n∑
k=1

|Xk − a|2 ≤ ∆
)

= −1
2
log

a2

∆
. (18)

(ii) If 0 < β < σ, then

lim
n→∞

1
n
logP (‖Xn

1 ‖n < β)

= −1
2

(
β2

σ2
− 1− log β

2

σ2

)
. (19)

(iii) If α > σ, then

lim
n→∞

1
n
logP (‖Xn

1 ‖n > α)

= −1
2

(
α2

σ2
− 1− log α

2

σ2

)
. (20)

The proof will be given in Appendix.
We now proceed to prove the theorems.

Proof of Theorem 2: We start with the proof of (4).
If ∆ ≥ α2, by encoding as ϕn(xn

1 ) = 0, ∀xn
1 ∈ Rn, we

have ϕ = {ϕn} ∈ C(∆, r). Since ‖ϕ‖ = 0, we have
Re(∆, r) = 0 and (4). We assume 0 < ∆ < α2 in the
sequel.
Proof of Converse Part: We shall prove the inequality

Re(∆, r) ≥
1
2
log

α2

∆
. (21)

For this end it sufficies to prove
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‖ϕ‖ ≥ 1
2
log

α2

∆
, (22)

for any (∆, r)-achievable code ϕ = {ϕn} ∈ C(∆, r).
We put ϕn(Xn) ≡ {(y(j))n1 ; j = 1, ..., |ϕn|} and An =
∪|ϕn|

j=1Bn((y(j))n1 ,
√
∆). Let γn > 0 be the number such

that

|Bn(0, γn)| = |An|,

where |An| denotes the volume of An, and let γ =
lim supn→∞ γn. It is clear that

|An| ≤ |ϕn||Bn(0,
√
∆)|.

Therefore, using (16), we have

|ϕn| ≥
|Bn(0, γn)|
|Bn(0,

√
∆)|

=
(

γn√
∆

)n

and

‖ϕ‖ ≥ 1
2
log

γ2

∆
. (23)

Since the probability density function pn(xn
1 ) of Xn

1 de-
pends only on ‖xn

1‖n and is stricty decreasing with re-
spect to ‖xn

1‖n, it is clear that

P (Xn
1 /∈ Bn(0, γn)) ≤ P (Xn

1 /∈ An) = en(ϕn,∆),

so that

lim sup
n→∞

1
n
logP (Xn

1 /∈ Bn(0, γn))

≤ lim sup
n→∞

1
n
log en(ϕn,∆) ≤ −r. (24)

Using (iii) of Lemma 2 and noting that the function
f(x) = x− log x is increasing on [1,∞), we have

−1
2

(
γ2

σ2
− 1− log γ

2

σ2

)

≤ lim sup
n→∞

1
n
logP (Xn

1 /∈ Bn(0, γn)). (25)

It follows from (7), (24) and (25) that

1
2

(
γ2

σ2
− 1− log γ

2

σ2

)
≥ 1
2

(
α2

σ2
− 1− log α

2

σ2

)
,

meaning that γ ≥ α. Therefore the desired inequality
(22) follows from (23).
Proof of Direct Part: For each

R >
1
2
log

α2

∆
,

by using the random coding method, we shall show that
there exists a code ϕ ∈ C(∆, r) with a rate less than R.
Let Y = {Yn} be a SMGS with distribution N(0, τ2),
where

τ2 = α2 −∆.

Applying (i) of Lemm 2 to Y = {Yn}, we have

lim
n→∞

1
n
logP

(
1
n

n∑
k=1

|Yk − α|2 ≤ ∆
)

= −1
2
log

α2

∆
.

Therefore, for any 1
2 log(α

2/∆) < R0 < R, there exists
an integer n0 such that

P

(
1
n

n∑
k=1

|Yk − α|2 ≤ ∆
)
> e−nR0 , n ≥ n0.

Since the distribution of Y n
1 is rotation invariant, for

any xn
1 ∈ Bn(0, α), it is clear that

P
(
‖Y n
1 − xn

1‖2n ≤ ∆
)
≥ P

(
1
n

n∑
k=1

|Yk − α|2 ≤ ∆
)
,

so that

P
(
‖Y n
1 − xn

1‖2n ≤ ∆
)
> e−nR0 , n ≥ n0.

Suppose that a family Y = {Y (m)} of independent
copies Y (m) = {Y (m)n }, m = 1, 2, ..., of Y = {Yn} is
independent of X. We denote by

Wn(Y , x,∆) = inf{m; ‖(Y (m))n1 − xn
1‖2n ≤ ∆}

the waiting time for string matching. Then, for any
sequence x = {xn} satisfying ‖xn

1‖n ≤ α (n ≥ n0), we
have

P
(
Wn(Y , x,∆) > �enR�

)
=

	enR
∏
m=1

P (‖(Y (m))n1 − xn
1‖2n > ∆)

≤ (1− e−nR0)e
nR

= (1− e−nR0)e
nR0en(R−R0)

< e−en(R−R0)
, n ≥ n0,

where �x� is the smallest integer ≥ x, and we have used
the inequality (1− x−1)x < e−1 (x > 1). Therefore

P (‖Xn
1 ‖n ≤ α, Wn(Y , X,∆) > �enR�) < e−en(R−R0)

and

P (Wn(Y , X,∆) > �enR�)
< P (‖Xn

1 ‖n > α) + e−en(R−R0)
, n ≥ n0.

Since Y is independent of X, this implies that there
exists at least a realization y = {y(m)} of Y = {Y (m)}
for which

P (Wn(y, X,∆) > �enR�)
< P (‖Xn

1 ‖n > α) + e−en(R−R0)
, n ≥ n0, (26)
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holds. Using y(m) = {y(m)n }, m = 1, 2, ..., we define a
code ϕ = {ϕn} as follows. If ‖xn

1 − (y(i))n1‖2n > ∆,
i = 1, ..., k − 1, and ‖xn

1 − (y(k))n1‖2n ≤ ∆, then
ϕn(xn

1 ) = (y(k))n1 (k = 1, 2, ..., �enR�); otherwise
ϕn(xn

1 ) = (y
(1))n1．Then clearly

‖ϕ‖ = lim
n→∞

1
n
log |ϕn| = R (27)

and

P (‖Xn
1 − ϕn(Xn

1 )‖2n > ∆)
≤ P (Wn(y, X,∆) > �enR�).

Thus, it follows from (7), (20) and (26) that

lim sup
n→∞

1
n
logP (‖Xn

1 − ϕn(Xn
1 )‖2n > ∆)

≤ lim
n→∞

1
n
logP (‖Xn

1 ‖n > α)

= −r,

meaning that ϕ is (∆, r)-achievable. Therefore from
(27) we have

Re(∆, r) ≤ R.

Since R > 1
2 log(α

2/∆) is arbitrary,

Re(∆, r) ≤
1
2
log

α2

∆
. (28)

The desired equation (4) follows from (28) and (21).
Since re(∆, ·) is the inverse function of Re(∆, ·),

(5) and (6) follow from (4). q.e.d.

Proof of Theorem 3: If ∆ ≥ σ2, then it is clear that
R∗

e(∆, r) ≡ 0 and re(∆, R)≡ 0. We assume 0 < ∆ < σ2

in the following.
We shall prove (9). By the definition of β and (19)

we have

lim
n→∞

1
n
logP (Xn

1 ∈ Bn(0, β)) = −r. (29)

Therefore, when β2 < ∆, ovbiously R∗(∆, r) = 0 and
(9) holds. We assume β2 > ∆ in the sequel. In the
same manner as in the proof of (21) we can prove the
inequality

R∗
e(∆, r) ≥

1
2
log

β2

∆
.

Hence it is enough to prove the converse inequality

R∗
e(∆, r) ≤

1
2
log

β2

∆
. (30)

Let Y = {Yn} be an i.i.d. sequence with distribution
N(0, τ2), where

τ2 = β2 −∆,

and Y = {Y (m)} be a family of independent copies

Y (m) = {Y (m)n }, m = 1, 2, ..., of Y = {Yn}. We assume
that Y is independent of X. Let R and R0 be real
numbers such that

1
2
log

β2

∆
< R0 < R.

In the same way as in the proof of Theorem 2 one can
show that there is an integer n0 such that

P
(
Wn(Y , x,∆) > �enR�

)
< e−en(R−R0)

, (31)

for any n ≥ n0 and xn
1 ∈ Bn(0, β). Since

P (Wn(Y , X,∆) ≤ �enR�)
≥ P (Wn(Y , X,∆) ≤ �enR�, Xn

1 ∈ Bn(0, β))
≥ P (Xn

1 ∈ Bn(0, β))
− P (Wn(Y , X,∆) > �enR�),

it follows from (29) and (31) that

lim inf
n→∞

1
n
logP (Wn(Y , X,∆) ≤ �enR�) ≥ −r.

This means that there exists at least a realization y =
{y(m)} of Y = {Y (m)} which satisfies

lim inf
n→∞

1
n
logP (Wn(y, X,∆) ≤ �enR�) ≥ −r.

We now define a code ϕ = {ϕn} in the same way as in
the proof of Theorem 2. Then we have ‖ϕ‖ = R and,
since

P (‖Xn
1 − ϕn(Xn

1 )‖2n ≤ ∆)
= P (Wn(y,X,∆) ≤ �enR�),

we see that

lim inf
n→∞

1
n
logP (‖Xn

1 − ϕn(Xn
1 )‖2n ≤ ∆) ≥ −r

and ϕ ∈ C∗(∆, r). Therefore

R∗
e(∆, r) ≤ R.

Thus we have obtained (30).
Since r∗e(∆, ·) is the inverse function of R∗

e(∆, ·),
(10) and (11) follow from (9). q.e.d.

Proof of Theorem 4: We shall prove (12). Let µ ∼
N(0, σ2) and ν∗ ∼ N(0, α2). Then from (3) we know
that (4) is rewritten as Re(∆, r) = R(∆; ν∗). Therefore
(12) is equivalent to

R(∆; ν∗) = max
ν

{R(∆; ν);D(ν‖µ) ≤ r}.

It follows from (2) and (7) that D(ν∗‖µ) = r. Thus we
have only to show

R(∆; ν) ≤ R(∆; ν∗), (32)

for any ν such that D(ν‖µ) ≤ r. We may assume that
the expectation of ν is 0. Denoting by γ2 the variance
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of ν, let ν0 ∼ N(0, γ2). Since

D(ν0‖µ) ≤ D(ν‖µ) ≤ r = D(ν∗‖µ)

and σ < α, we know that γ ≤ α, so that

R(∆; ν) ≤ R(∆; ν0) ≤ R(∆; ν∗).

Thus we have obtained (32). We can prove that (13) is
equivalent to Eqs. (5) and (6).

We turn to prove (14). We first assume that ∆ <
β2. Let ν∗ ∼ N(0, β2). Then it follows from (3) and
(9) that (14) is equivalent to

R(∆; ν∗) = min
ν

{R(∆; ν);D(ν‖µ) ≤ r}. (33)

Since

D(ν∗‖µ) = 1
2

(
β2

σ2
− 1− log β

2

σ2

)
= r, (34)

to demonstrate (33) it is sufficient to prove

R(∆; ν∗) ≤ R(∆; ν) (35)

for any ν such that D(ν‖µ) ≤ r. We may assume that
the expectation of ν is 0. Let ν0 ∼ N(0, γ2), where
γ2 is the variance of ν. By Lemma 1, if γ < β, then
D(ν‖µ) ≥ D(ν0‖µ) > D(ν∗‖µ) = r. This contradicts
with the assumption D(ν‖µ) ≤ r. Therefore γ ≥ β.
Using (3) we have

R(∆; ν) ≥ R(∆; ν0)−D(ν‖ν0)

=
1
2
log

γ2

∆
−D(ν‖ν0). (36)

It is easily seen that

D(ν‖ν0)

=
∫
R
log

dν

dµ
(x)dν(x)−

∫
R
log

dν0
dµ
(x)dν(x)

= D(ν‖µ)−
∫
R
log

dν0
dµ
(x)dν0(x)

≤ r −D(ν0‖µ). (37)

It follows from (34), (36) and (37) that

R(∆; ν) ≥ 1
2
log

γ2

∆
− r +D(ν0‖µ)

≥ 1
2
log

γ2

∆
− 1
2

(
β2

σ2
− 1− log β

2

σ2

)

+
1
2

(
γ2

σ2
− 1− log γ

2

σ2

)

=
1
2
log

β2

∆
+

1
2σ2

(γ2 − β2)

≥ R(∆; ν∗).

Thus we have obtained (35). Secondary we assume that
∆ ≥ β2. Then we can easily show that the right hand
side of (14) is equal to zero. We can prove that (15) is
equivalent to Eqs. (10) and (11). q.e.d.

4. Concluding Remarks

We have studied the error exponent for source coding
with fidelity criterion and obtained explicit formulas for
the minimum achievable rate Re(∆, r) and the reliabil-
ity function re(∆, R) for the SMGS. It has been shown
that the expression of the error exponent, obtained by
Marton, for the SMS with finite alphabet remains true
for the SMGS.

Although we have treated only memoryless sources
in this paper, we may expect that our results can be
extended for information sources with memory. Let
X = {Xn} be a stationary ergodic sources and µ be
the probability distribution of X. It is conjectured
that, under some assumptions, we have the following
formulas:

Re(∆, r) = sup
ν
{R(∆; ν);D(ν‖µ) ≤ r},

re(∆, R) = inf
ν
{D(ν‖µ);R(∆; ν) ≥ R},

R∗
e(∆, r) = inf

ν
{R(∆; ν);D(ν‖µ) ≤ r},

r∗e(∆, R) = inf
ν
{D(ν‖µ);R(D; ν) ≤ R},

where we denote by D(ν‖µ) the divergence per unit
time and by R(∆; ν) the rate-distortion function per
unit time.
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Appendix: Proof of Lemma 2

Proof of Lemma 2: (i) Using a large deviation the-
orem (cf. [4], [6]) for the i.i.d. sequence X = {Xn}, we
have (17). Let a =

√
σ2 +∆. We consider a Gaussian

distribution

ν∗ ∼ N

(
σ2

a
,
σ2∆
a2

)
.
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Then ν∗ ∈ Pa. In fact, by elementary caluculation, we
can show that∫

R
(x− a)2dν∗(x)

=
∫
R

(
x− σ2

a

)2
dν∗(x) +

(
σ2

a
− a

)2

=
σ2∆
a2

+
(
σ2

a
− a

)2
= ∆.

Furthermore, by Lemma 1,

D(ν∗‖µ) = 1
2

(
∆
a2

− 1− log ∆
a2
+
σ2

a2

)

=
1
2
log

a2

∆
.

Therefore to prove (18) it is sufficient to show that

D(ν∗‖µ) ≤ D(ν‖µ), ∀ν ∈ Pa. (A· 1)

We can easily show that

log
dν∗

dµ
(x) = −1

2
log

σ2∆
a2

+
1
2
log σ2

− a2

2σ2∆

(
x− σ2

a

)2
+

x2

2σ2
(A· 2)

and that

− a2

2σ2∆

(
x− σ2

a

)2
+

x2

2σ2

= − 1
2∆
(x2 − 2ax+ σ2)

= − 1
2∆
(x− a)2 +

1
2
. (A· 3)

Let ν ∈ Pa and ν0 be a Gaussian distribution with the
same mean and variance as ν. By Lemma 1

D(ν0‖µ) ≤ D(ν‖µ). (A· 4)

Moreover it is easily seen that

D(ν0‖µ) =
∫
R
log

dν∗

dµ
(x)dν0(x) +D(ν0‖ν∗)

≥
∫
R
log

dν∗

dµ
(x)dν0(x). (A· 5)

By (A· 2) and (A· 3)∫
R
log

dν∗

dµ
(x)dν0(x)

= −1
2
log

σ2∆
a2

+
1
2
log σ2

− 1
2∆

∫
R
(x− a)2dν0(x) +

1
2

= −1
2
log

σ2∆
a2

+
1
2
log σ2

= D(ν∗‖µ). (A· 6)

The desired inequality (A· 1) follows from (A· 4), (A· 5)
and (A· 6).

(ii) and (iii) can be proved in the same way.
q.e.d.
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