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THE ASYMPTOTICS

OF STRING MATCHING PROBABILITIES

FOR GAUSSIAN RANDOM SEQUENCES

SHUNSUKE IHARA and MASASHI KUBO

Abstract. Wyner and Ziv (1989) studied the asymptotic properties of recur-
rence times of stationary ergodic processes, and applied the results to obtain
optimal data compression schemes in information transmission. Since then
many data compression algorithms based upon string matching of a sequence
from an information source with a database have been proposed and studied.
In this paper we consider Gaussian stationary processes representing an in-
formation source and a database, and study problems of string matching with
distortion. We prove theorems concerning the asymptotic behavior of the prob-
ability of string matching with distortion and the waiting time for the string
matching.

§1. Main Results

Wyner and Ziv [WZ] have proved some asymptotic properties of recur-

rence times of stationary ergodic finite alphabet processes, and used these

properties to obtain insight into the working of the Lempel-Ziv algorithm in

information transmission. They showed that n−1 logWn converges in prob-

ability to H as n → ∞, where Wn is the recurrence time of a string with

length n and H is the entropy of the process. Ornstein and Weiss [OW]

extended the result by proving that the convergence is with probability one.

Since then many data compression algorithms based upon string matching

have been proposed and studied (see [YK] and the references therein). The

probability of string matching and the waiting time for string matching

have been also studied in ergodic theory [S].

In this paper we consider the lossy case, namely the problems of string

matching with distortion. We are interested in the asymptotic behavior of

the probability of string matching with distortion and the waiting time for

string matching between two independent Gaussian stationary processes.
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Let X = {Xn} and Y = {Yn} be stationary processes defined on a prob-

ability space (Ω,F , P ), representing an information source and a database,

respectively. The probability distribution of Y n
1 ≡ (Y1, . . . , Yn) is denoted

by µn
Y . We denote by

Bn(x, D) =

{

yn
1 ∈ Rn;

1

n

n
∑

k=1

|yk − xk|
2 < D

}

the open ball, where yn
m = (ym, . . . , yn). We consider the probability

µn
Y (Bn(x, D)) = P

(

1

n

n
∑

k=1

|Yk − xk|
2 < D

)

of string matching within distortionD > 0 (with respect to the mean-square

error), where x = {xn} is a realization of X . We also consider the waiting

time for the string matching. For each pair of sequences x = {xn} and

y = {yn}, the waiting time of length n is defined as

Wn(y, x, D) = inf
{

m ≥ 0; ym+n−1
m ∈ Bn(x, D)

}

.

Namely, Wn(y, x, D) is the waiting time until a substring of y = {yk} first

hits the ball Bn(x, D). We are interesting in the asymptotic behavior of the

probability µn
Y (Bn(x, D)) and the waiting time Wn(Y,X, D) as n→ ∞.

In this paper, we consider the case where X = {Xn} and Y = {Yn} are

mutually independent Gaussian stationary processes. The aim of the paper

is to show that the string matching probability goes to zero exponentically

fast:
1

n
log µn

Y (Bn(x, D)) −→ −R∗(D),

and that the waiting time goes to infinity with the same exponent:

1

n
logWn(Y,X, D) −→ R∗(D),

as n → ∞. The exponent rate R∗(D) is given in terms of the mutual

information and the relative entropy.

We denote byD(µ ‖ ν) the relative entropy (or information divergence)

of probability measures, defined as

D(µ ‖ ν) =







∫

log
dµ

dν
(x) dµ(x), if µ� ν,

∞, otherwise.
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The mutual information I(ξ, η) between random variables ξ and η is defined

by

I(ξ, η) = D(µξη ‖ µξ × µη),

where µξ, µη and µξη are the probability distributions of ξ, η and (ξ, η),

respectively, and µξ × µη is the direct product of µξ and µη. For two

stochastic processes ξ = {ξn} and η = {ηn}, the relative entropy D(ξ ‖ η)

per unit time is defined by

D(ξ ‖ η) = lim inf
n→∞

1

n
D(ξn

1 ‖ ηn
1 ),

where D(ξn
1 ‖ ηn

1 ) = D(µn
ξ ‖ µn

η ). The mutual information I(ξ, η) per unit

time is defined by

I(ξ, η) = lim inf
n→∞

1

n
I(ξn

1 , η
n
1 ).

We may assume that the Gaussian processes X and Y are regular (or

purely non-deterministic), namely ∩∞
n=1Ln(X) = ∩∞

n=1Ln(Y ) = {1} where

Ln(X) is the subspace of L2(Ω, P ) spanned by Xk, k ≤ n, and {1} denotes

the subspace of L2(Ω, P ) which involves only constants. Then it is known

that X and Y have spectral density functions (SDF’s) f and g, respectively,

such that
∫ π
−π | log f(λ)| dλ < ∞ and

∫ π
−π | log g(λ)| dλ < ∞ (cf. [HH]). We

may assume without loss of generality that E[Xn] = E[Yn] = 0. Then the

covariance matrix of Xn
1 is equal to the n-dimensional Toeplitz matrix

Tn(f) = [ tjk(f) ]
j,k=1,...,n

, tjk(f) =

∫ π

−π
ei(j−k)λf(λ) dλ,

of the SDF f . We note that, since X and Y are regular, the distributions

of Xn
1 and Y n

1 are non-degenerate, so that the matrices Tn(f) and Tn(g)

are regular (see [HH]). We put

D0 ≡ E[|Xn − Yn|
2] = E[X2

n] + E[Y 2
n ].

For the process X , we denote by UD the class of all stochastic processes

U = {Un} satisfying

lim sup
n→∞

1

n

n
∑

k=1

E[|Uk −Xk|
2] ≤ D.

The following theorem concerning the string matching probability is

one of our main results.
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Theorem 1. Let X and Y be mutually independent regular Gaussian

stationary processes and assume that the SDF’s f(λ) and g(λ) are bounded.

Then, for any 0 < D < D0,

lim
n→∞

1

n
log P

(

1

n

n
∑

k=1

|Yk − xk|
2 < D

)

= −R∗(D),(1)

for µX -a.e. x = {xn}, where R∗(D) is given by

R∗(D) = inf
{

lim inf
n→∞

1

n

(

D(Un
1 ‖ Y n

1 ) + I(Xn
1 , U

n
1 )
)

; U ∈ UD

}

.(2)

The asymptotic property (1) has been shown when Y = {Yn} is an i.i.d.

(independent with identical distribution) random sequence [KA, YK] or a

Markov chain [YK]. Note that in the previous works (see [YK]) random

variables take values in finite sets and the formula (1) is proved by using a

combinatorial method, called the method of types. Our method to prove

(1) is based upon a large deviation theorem which is stated in Section 2.

We also note that our method can be applied for i.i.d. random variables

taking values in an arbitrary space to show the property (1), where the

distortion is measured not necessarily by squared error distortion. The

proof of Theorem 1 will be given in Section 3.

To study the asymptotic behavior of the waiting time, Yang and Kieffer

[YK] introduced the following mixing condition. We denote by Fn
m the σ-

field generated by Ym, . . . , Yn. For each positive integer k, the number

ϕ(k) = sup{|P (G | F ) − P (G)|; (G, F ) ∈ Gk}

is called the mixing coefficient, where

Gk = {(G, F ); ∃(r, s, t) such that r ≤ s ≤ t− k, G ∈ F s
r , F ∈ F∞

t } .

We say that Y has summable mixing coefficients if
∑∞

k=1 ϕ(k) <∞.

On the asymptotics of the waiting time, we can prove the following

theorem.

Theorem 2. Let X and Y be the same processes as in Theorem 1.
Assume that the process Y has summable mixing coefficients. Then, with

probability one,

lim
n→∞

1

n
logWn(Y,X, D) = R∗(D).(3)
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In a case where the state space of X and Y is discrete, Yang and Kieffer

[YK] have shown that, under the mixing condition of Theorem 2, (3) can be

derived from (1). Their arguments can be applied for our case without any

modification. Hence we can show Theorem 2 as a corollary of Theorem 1.

It should be noticed that

R(D) ≤ R∗(D),

where R(D) is the rate distortion function (per unit time) of the process X

defined as

R(D) = inf{I(X, U); U ∈ UD}.

The rate R∗(D) can be expressed in terms of SDF’s f(λ) and g(λ). For

each 0 < D < D0, there is a unique constant θ∗ < 0 determined by

∫ π

−π

g(λ)

1 − 4πθ∗g(λ)
dλ +

∫ π

−π

f(λ)

(1 − 4πθ∗g(λ))2
dλ = D.(4)

We put

h(λ) =
g(λ)

1 − 4πθ∗g(λ)
.(5)

Note that X = {Xn} has the spectral representation Xn =
∫ π
−π e

inλdζ(λ),

where {dζ(λ)} is the random spectral measure such that E[|dζ(λ)|2]/dλ =

f(λ). Since
∫ π
−π h(λ)2f(λ)dλ <∞, a process ξ = {ξn} defined by

ξn = −4πθ∗
∫ π

−π
einλh(λ)dζ(λ)

is a Gaussian stationary process with SDF

fξ(λ) = 16π2(θ∗)2h(λ)2f(λ).

We define a Gaussian stationary process U∗ = {U∗
n} by

U∗
n = ξn + ηn,

where η = {ηn} is a Gaussian stationary process, independent of X , with

SDF h(λ). We can prove the following theorem.
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Theorem 3. Let X and Y be the same processes as in Theorem 1.
Then, for each 0 < D < D0,

R∗(D) = D(U ∗ ‖ Y ) + I(X, U∗)(6)

=
1

4π

∫ π

−π
log(1 − 4πθ∗g(λ)) dλ

+

∫ π

−π

θ∗g(λ)

1 − 4πθ∗g(λ)
dλ+ 4π

∫ π

−π

(θ∗)2f(λ)g(λ)

(1 − 4πθ∗g(λ))2
dλ,

where θ∗ < 0 is the constant determined by (4).

The proof will be given in Section 3.

§2. Large Deviation Theorem

Let Z = {Zn} be a sequence of random variables. The logarithmic

moment generating function associated with Z is defined as

Λn(θ) = logE[exp(θZn)], θ ∈ R.

For each n, Λn(θ) is a convex function. We define the function Λ(θ) as

Λ(θ) = lim
n→∞

1

n
Λn(nθ),(7)

if the limit exists. Let D be the set of all θ ∈ R such that the limit (7) exists

and the function Λ(·) is of C1 class in a neighborhood of θ, and defined the

set D′ by D′ = {Λ′(θ); θ ∈ D}. In the following we assume that

D 6= φ, (D′)◦ 6= φ,(8)

where (D′)◦ is the interior of D′. The function ψ(θ) is defined as

ψ(θ) = θΛ′(θ) − Λ(θ), θ ∈ D.

The function

Λ∗(x) = sup
θ∈D

{θx− Λ(θ)}

is called the Fenchel-Legendre transform of Λ(θ). Let us fix θ∗ ∈ D such

that Λ′(θ∗) ∈ (D′)◦ and θ∗ 6= 0, and consider a half-line

Π = {x ∈ R; θ∗(x− a∗) > 0},
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where a∗ = Λ′(θ∗). Clearly a∗ ∈ Π and

ψ(θ∗) = Λ∗(a∗) = inf{Λ∗(x); x ∈ Π}.

For our purpose the following large deviation theorem (cf. [DZ]) is use-

ful.

Proposition 1. Assume that the condition (8) is satisfied.

(i) (Upper bound) For any measurable set A ⊂ Π,

lim sup
n→∞

1

n
log P (Zn ∈ A) ≤ −ψ(θ∗).(9)

(ii) (Lower bound) Let A be an open set such that A ∩ (D′)◦ 6= φ. Then,

for any θ ∈ D such that Λ′(θ) ∈ A ∩ (D′)◦,

lim inf
n→∞

1

n
logP (Zn ∈ A) ≥ −ψ(θ).(10)

(iii) Let A ⊂ Π be an open set such that A ∩ (a∗ − δ, a∗ + δ) 6= φ for any

δ > 0. Then

lim
n→∞

1

n
log P (Zn ∈ A) = lim

n→∞

1

n
logP (Zn ∈ A) = −ψ(θ∗).(11)

§3. Proof of Theorems

Let us introduce some auxiliary notations. It is convenient to use the

notion of asymptotic equivalence of sequences {An} and {Bn} of matrices,

where An and Bn are n-dimensional square matrices (cf. [Gr, GS]). We

define norms of the matrix by

‖An‖
2 =

1

n

n
∑

i,j=1

|aij|
2,

|||An|||
2 = max{〈A∗

nAnx
n
1 , x

n
1 〉; x

n
1 ∈ Rn, 〈xn

1 , x
n
1 〉 ≤ 1},

where aij is the (i, j) component of An and 〈xn
1 , y

n
1 〉 =

∑n
k=1 xkyk denotes

the inner product in Rn. We say that {An} and {Bn} are asymptotically

equivalent and denote An ∼ Bn, if there exists a constant K <∞ such that

|||An|||, |||Bn||| ≤ K, for all n, and

lim
n→∞

‖An −Bn‖ = 0.

We summarize here some properties on the asymptotic behavior of

Toeplitz matrices.
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Lemma 1. (see [Gr, GS, I]) Let f be a SDF and ϕ ∈ L2[−π, π]. Then

lim
n→∞

1

n
log |Tn(f)| =

1

2π

∫ π

−π
log{2πf (λ)} dλ,

lim
n→∞

1

n
TrTn(f) = 2π

∫ π

−π
f(λ) dλ,

and

2πTn(ϕf ) ∼ Tn(ϕ) Tn(f).

Moreover, if f(λ) ≥ a > 0 for ∀λ ∈ [−π, π],

4π2(Tn(f))−1 ∼ Tn(f−1),

where Tn(f−1) denotes the Toeplitz matrix corresponding to 1/f (λ).

The following lemma will play a key role in the proof of Theorem 1.

Lemma 2. Let X = {Xn} be the Gaussian process in Theorem 1. As-

sume that An ∼ Tn(ϕ), where ϕ(λ) is a bounded function. Then, with

probability one,

lim
n→∞

1

n
〈AnX

n
1 , X

n
1 〉 = lim

n→∞

1

n
E[〈AnX

n
1 , X

n
1 〉] = 2π

∫ π

−π
ϕ(λ)f (λ) dλ.(12)

The proof of Lemma 2 will be given in Appendix.

We are now in a position to prove Theorem 1.

Proof of Theorem 1. Let X = {Xn} and Y = {Yn} be the processes in

Theorem 1. We shall apply the large deviation theorem (Proposition 1) to
a random sequence Z = {Zn} given by

Zn =
1

n

n
∑

k=1

|Yk − xk|
2, n = 1, 2, . . . ,

where a sequence x = {xn} ∈ R∞ is fixed. We define an interval Θ by

Θ =
(

−∞,
1

4πM

)

,

where M = ess sup{g(λ); λ ∈ [−π, π]}. Let θ ∈ Θ be fixed for a moment.
We denote by In the n-dimensional identity matrix. Since (1− 4πθg(λ))−1

is a bounded function, we know that the matrix

Tn(g)
(

Tn(g)−1 − 2θIn
)

= In − 2θTn(g) = Tn

(

1 − 4πθg

2π

)
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is invertible, and using Lemma 1 we have

Tn

(

1 − 4πθg

2π

)−1

∼
1

2π
Tn

(

1

1 − 4πθg

)

.

Hence we can define a matrix An,θ by

An,θ =
(

Tn(g)−1 − 2θIn
)−1

= Tn

(

1 − 4πθg

2π

)−1

Tn(g).

Then, by using Lemma 1, it is easy to show that

2θAn,θ + In ∼
1

π
Tn

(

θ

1 − 4πθg

)

Tn(g) + Tn

(

1

2π

)

∼
1

2π
Tn

(

1

1− 4πθg

)

.

Therefore, applying Lemma 2, we obtain

lim
n→∞

1

n
〈(2θAn,θ + In)xn

1 , x
n
1 〉 = lim

n→∞

1

n
E [〈(2θAn,θ + In)Xn

1 , X
n
1 〉](13)

=

∫ π

−π

f(λ)

1 − 4πθg(λ)
dλ,

for µX -a.e. x. Since the covariance matrix of (Y1, . . . , Yn) is Tn(g), we have

Λn(nθ) = −
1

2
log |In − 2θTn(g)| + θ〈(2θAn,θ + In)xn

1 , x
n
1〉,(14)

where Λn(θ) is the logarithmic moment generating function associated with

{Zn}. It is clear from Lemma 1 that

lim
n→∞

1

n
log |In − 2θTn(g)| =

1

2π

∫ π

−π
log(1 − 4πθg(λ)) dλ.(15)

Combine (13), (14) and (15) to get

Λ(θ) = lim
n→∞

1

n
Λn(nθ)(16)

= −
1

4π

∫ π

−π
log(1 − 4πθg(λ)) dλ+

∫ π

−π

θf(λ)

1 − 4πθg(λ)
dλ,

for µX -a.e. x. We should note here that, although Λn(θ) depends on the
sequence x = {xn}, the limit Λ(θ) does not depend on x. Differentiating

the both sides of (16), we can show that Λ(θ) is differentiable and

Λ′(θ) =

∫ π

−π

g(λ)

1 − 4πθg(λ)
dλ+

∫ π

−π

f(λ)

(1 − 4πθg(λ))2
dλ.(17)
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Moreover we have

ψ(θ) = θΛ′(θ) − Λ(θ)(18)

=
1

4π

∫ π

−π
log(1 − 4πθg(λ)) dλ

+

∫ π

−π

θg(λ)

1 − 4πθg(λ)
dλ + 4π

∫ π

−π

θ2f(λ)g(λ)

(1 − 4πθg(λ))2
dλ.

Note that D0 =
∫ π
−π(f(λ)+g(λ)) dλ = Λ′(0). It is clear from (17) that Λ′(θ)

is strictly increasing continuous function. Hence there is a unique θ∗ ∈ Θ
such that θ∗ < 0 and a∗ = Λ′(θ∗) = D. It is clear that

Π = {x ∈ R; θ∗(x− a∗) > 0} = (−∞, D).

Applying Proposition 1 for a set A = (0, D) ⊂ Π, we obtain

lim
n→∞

1

n
log P

(

Zn

n
< D

)

= −ψ(θ∗).(19)

To complete the proof we must prove ψ(θ∗) = R∗(D). Noting (6) and (18),

we see that this equation is shown in Theorem 3.

We now turn to prove Theorem 3.

Proof of Theorem 3. From the definition of U∗ = {U∗
n} we know that

the covariance and the cross covariance are given by

E[U ∗
n+mU

∗
m] =

∫ π

−π
einλfU∗(λ) dλ(20)

and

E[U ∗
n+mXm] =

∫ π

−π
einλfU∗X(λ) dλ,(21)

where
fU∗(λ) = fη(λ) + fξ(λ) = h(λ) + 16π2θ∗2h(λ)2f(λ)(22)

and
fU∗X(λ) = −4πθ∗h(λ)f (λ).(23)

Using (20), (21), (22), (23), (5) and (17), we see that

E[|U ∗
n −Xn|

2] =

∫ π

−π
{fU∗(λ) − 2fU∗X(λ) + f(λ)} dλ(24)

=

∫ π

−π

{

g(λ)

1 − 4πθ∗g(λ)
+

f(λ)

(1 − 4πθ∗g(λ))2

}

dλ

= Λ′(θ∗)

= D,



STRING MATCHING 49

meaning that
U∗ ∈ UD .(25)

It is known (cf. [I, P2]) that the relative entropy per unit time for Gaussian
stationary processes is given by

D(U ∗ ‖ Y ) =
1

4π

∫ π

−π

{

fU∗(λ)

g(λ)
− 1 − log

fU∗(λ)

g(λ)

}

dλ.

Substitute (22) and (5) into this formula to get

D(U ∗ ‖ Y )(26)

= θ∗
∫ π

−π

g(λ)(1 + 4πθ∗f(λ) − 4πθ∗g(λ))

(1 − 4πθ∗g(λ))2
dλ −

1

4π

∫ π

−π
log

fU∗(λ)

g(λ)
dλ.

On the other hand, it is known (see [P1]) that the mutual information per

unit time is calculated by

I(X, U∗) = −
1

4π

∫ π

−π
log

(

1 −
|fU∗X(λ)|2

fU∗(λ)f (λ)

)

dλ.

Substituting (22) and (23) into this formula, we obtain

I(X, U∗) =
1

4π

∫ π

−π
log

fU∗(λ)

h(λ)
dλ.(27)

It follows from (26), (27), (5) and (18) that

D(U ∗ ‖ Y ) + I(U ∗, X)(28)

=
1

4π

∫ π

−π

{

4πθ∗g(λ)(1 + 4πθ∗f(λ) − 4πθ∗g(λ))

(1 − 4πθ∗g(λ))2

+ log(1 − 4πθ∗g(λ))

}

dλ

= ψ(θ∗).

Thus, noting (25), we see that

inf
{

lim inf
n→∞

1

n

(

D(Un
1 ‖ Y n

1 ) + I(Xn
1 , U

n
1 )
)

; U ∈ UD

}

≤ ψ(θ∗).(29)

To prove the converse inequality, for each x = {xn}, we define a conditional

probability distribution ν∗n(· | x) on Rn by

dν∗n(· | x)

dµn
Y

(y) = exp(−Λn(nθ∗)) exp

(

θ∗
n
∑

k=1

|yk − xk|
2
)

.
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Let U ∈ UD be an arbitrary process. Then

∫∫

R2n

log
dν∗n(· | x)

dµn
Y

(y) dµn
XU(x, y)

= −Λn(nθ∗) + θ∗
∫∫

R2n

n
∑

k=1

|yk − xk|
2 dµn

XU(x, y)

= −Λn(nθ∗) + θ∗E

[ n
∑

k=1

|Uk −Xk|
2
]

,

and

lim inf
n→∞

1

n

∫∫

R2n

log
dν∗n(· | x)

dµn
Y

(y) dµn
XU(x, y)(30)

= − lim
n→∞

1

n
Λn(nθ∗) + θ∗ lim sup

n→∞

1

n
E

[ n
∑

k=1

|Uk −Xk|
2
]

≥ −Λ(θ∗) + θ∗D.

We may assume that D(Un
1 ‖ Y n

1 ) and I(Xn
1 , U

n
1 ) are finite. Then we have

D(Un
1 ‖ Y n

1 ) + I(Xn
1 , U

n
1 )(31)

=

∫

Rn

log
dµn

U

dµn
Y

(y) dµn
U(y) +

∫∫

R2n

log
dµn

XU

dµn
X × µn

U

(x, y) dµn
XU(x, y)

=

∫∫

R2n

log
(dµn

U

dµn
Y

(y) ·
dµn

XU

dµn
X × µn

U

(y, x)
)

dµn
XU(x, y)

=

∫∫

R2n

log
dµn

U |X(· | x)

dµn
Y

(y) dµn
XU(x, y).

Since the relative entropy is non-negative,

0 ≤

∫∫

R2n

log
dµn

U |X(· | x)

dν∗n(· | x)
(y) dµn

U |X(y | x) dµn
X(x)(32)

=

∫∫

R2n

log
dµn

U |X(· | x)

dµn
Y

(y) dµn
XU(x, y)

−

∫∫

R2n

log
dν∗n(· | x)

dµn
Y

(y) dµn
XU(x, y).

Therefore, it follows from (30), (31) and (32) that

lim inf
n→∞

1

n
{D(Un

1 ‖ Y n
1 ) + I(Xn

1 , U
n
1 )}
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≥ lim inf
n→∞

1

n

∫∫

R2n

log
dν∗n(· | x)

dµn
Y

(y) dµn
XU(x, y)

≥ −Λ(θ∗) + θ∗D

= ψ(θ∗).

This means that

inf
{

lim inf
n→∞

1

n

(

D(Un
1 ‖ Y n

1 ) + I(Xn
1 , U

n
1 )
)

; U ∈ UD

}

≥ ψ(θ∗).(33)

The desired result (6) follows from (28), (29) and (33).

Appendix. Proof of Lemma 2

It is clear that

E[〈AnX
n
1 , X

n
1 〉] = Tr(AnTn(f)).(34)

Since

AnTn(f) ∼ Tn(ϕ)Tn(f) ∼ 2πTn(ϕf ),

we know from (34) that

lim
n→∞

1

n
E[〈AnX

n
1 , X

n
1 〉] = lim

n→∞

1

n
Tr Tn(2πϕf )

= 2π

∫ π

−π
ϕ(λ)f (λ) dλ.

Here we apply the large deviation theorem to the quadratic forms ζn =

n−1〈AnX
n
1 , X

n
1 〉 = n−1∑n

j,k=1 ajkXjXk, n = 1, 2, . . ., of the Gaussian pro-

cess {Xn} (cf. [BD, BGR]). We put

Φn(θ) = logE[exp(θζn)].

Then we can show equations

Φn(nθ) = −
1

2
log |In − 2θTn(f)An|,

Φ(θ) ≡ lim
n→∞

1

n
Φn(nθ) = −

1

4π

∫ π

−π
log

(

1 − 8π2θf(λ)ϕ(λ)
)

dλ,

and

Φ′(θ) = −
1

4π

∫ π

−π

−8π2f(λ)ϕ(λ)

1 − 8π2θf(λ)ϕ(λ)
dλ = 2π

∫ π

−π

f(λ)ϕ(λ)

1− 8π2θf(λ)ϕ(λ)
dλ.
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We note here that

Φ′(0) = 2π

∫ π

−π
f(λ)ϕ(λ) dλ= lim

n→∞

1

n
E[〈AnX

n
1 , X

n
1 〉].

Let Ψ(θ) = θΦ′(θ) − Φ(θ). Then

Ψ(θ) = −
1

4π

∫ π

−π

{

−8π2f(λ)ϕ(λ)

1 − 8π2θf(λ)ϕ(λ)
− log

(

1− 8π2θf(λ)ϕ(λ)
)

}

dλ.

Let δ > 0 be an arbitrary small number. There exists θ1 < 0 such that

Φ′(θ1) = Φ′(0) − δ. Applying Proposition 1, we have

lim
n→∞

1

n
logP (ζn < Φ′(0) − δ) = −Ψ(θ1).

Similarly there exists θ2 > 0 such that

lim
n→∞

1

n
logP (ζn > Φ′(0) + δ) = −Ψ(θ2).

Therefore, for the events Gn = {|ζn − Φ′(0)| > δ}, n = 1, 2, . . ., we have

lim
n→∞

1

n
logP (Gn) = −c,(35)

where c = min(Ψ(θ1),Ψ(θ2)) > 0. It is easily seen from (35) that the

summation
∑∞

n=1 P (Gn) is finite. Thus, by using Borel-Cantelli Lemma,

we have

P

( ∞
⋃

n=1

∞
⋂

k=n

Gc
k

)

= 1.

This means that, for almost all ω, there exists n0 = n0(ω) such that

|ζn − Φ′(0)| ≤ δ, ∀n ≥ n0.

Since δ > 0 is arbitrary, we conclude that

lim
n→∞

ζn = Φ′(0) = 2π

∫ π

−π
ϕ(λ)f (λ) dλ,

with probability one. Thus the proof of (12) is complete.



STRING MATCHING 53

References

[BD] W. Bryc and A. Dembo, Large deviations for quadratic functionals of Gaussian

processes, J. Theoretical Prob., 10 (1997), 307–332.

[BGR] B. Bercu, F. Gamboa and A. Rouault, Large deviations for quadratic forms of

Gaussian stationary processes, Stochastic Process Appl., 71 (1997), 75–90.

[DZ] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones

and Bartlett Pub., Boston, MA, 1992.

[Gr] R. M. Gray, Toeplitz and circulant matrices, Stanford Univ., Tech. Report, 6504-1

(1977).
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